

	4" 1 ~	4" 3 ~	6"	3~	8"	3 ~	10'	3~
kW	CS-R	CS-R	CS-R	I-CS-R 316	CS-R	I-CS-R 316	CS-R	I-CS-R 316
0,37	•	•						
0,55	•	•						
0,75	•	•						
1,1	•	•						
1,5	•	•						
2,2	•	•						
3		•						
4		•	•	•				
5,5		•	•	•				
7,5			•	•				
9,2			•	•				
11			•	•				
13			•	•				
15			•	•				
18,5			•	•				
22			•	•				
26			•	•				
30			•	•	•	•		
37			•	•	•	•		
45					•	•		
51					•	•		
59					•	•		
66					•	•		
75					•	•	•	•
92					•	•	•	•
110							•	•
130							•	•
150							•	•
165							•	•
185							•	•

I motori sommersi 4", 6", 8" e 10" Calpeda sono realizzati con tecnologie all'avanguardia e componenti di qualità superiore che assicurano un'ottima resistenza meccanica ed un'eccellente affidabilità elettrica.

Le ottime prestazioni sono inoltre garantite grazie ai rigorosi collaudi che vengono effettuati su tutti i vari componenti durante le diverse fasi di produzione.

Motori sommersi riavvolgibili serie CS-R

I motori CS-R 6/8/10" sono in bagno d'acqua e i cavi rivestiti con cloruro di polivinile (ad alte prestazioni per motori 6CS-R), mentre i motori CS-R 4" hanno uno speciale fluido dielettrico di tipo alimentare che garantisce un migliore effetto lubrificante aumentando la durata di tutte le parti in movimento e dei fili di rame.

Lo speciale design di tutti i ns. motori permette un facile accesso ai diversi componenti, semplificando così le operazioni di manutenzione e riparazione.

CS-R: esecuzione standard.

I-CS-R: esecuzione in 1.4401 (AISI 316).

Dati di esercizio

Motore ad induzione a 2 poli, 50 Hz (n ≈ 2900 1/min).

Dimensioni per il collegamento alla pompa secondo NEMA Standards (escuso 10").

Tensioni di alimentazione:

- monofase 230 V fino a 2,2 kW per motori 4".
- trifase
- 230 V ; 400 V per motori 4" 400 V; 400/690 V per motori 6",8",10". - trifase

Variazione di tensione: ± 10%.

Avviamento consigliato per potenze da 7,5 kW e superiori: stella/triangolo, soft start, impedenza statorica, autotrasformatore. Classe di Isolamento:

- F per motori 4"
- E per motori 6", Y (PVC) per I-6", A (PE2+PA) per I-6" 45kW
- Y (PVC) per 8"
- Y (PVC) per 10", A (PE2+PA) per 10" 170kW e 190kW Protezione IP 68.

Installazione sotto il livello dell'acqua: 200 m per 4", 150 m per 6,8,10"

Motore predisposto per funzionamento con inverter (con adequato filtro Sine-Wave).

Installazione orizzontale (esclusi 6" da 37-45kW, 8" da 92 kW, 10" da 170-190kW)

Limiti d'impiego

Motore	P2	Max. temperatura acqua	Min. velocità flusso di raffreddamento	Max. avviamenti ora
4CS-R	tutti	35 °C	0,1 m/s	30
6CS-R	4÷15 kW	40 °C	0,5 m/s	20
	18,5÷30 kW	35 °C	0,5 m/s	20
	37 kW	30 °C	0,5 m/s	20
8CS-R	30÷45 kW	30 °C	0,2 m/s	10
	51 kW	30 °C	0,2 m/s	8
	59÷75 kW	30 °C	0,5 m/s	8
	92÷110 kW	30 °C	0,5 m/s	6
10CS-R	tutti	25 °C	0,15 m/s	6

Servizio continuo.

Esecuzioni speciali a richiesta

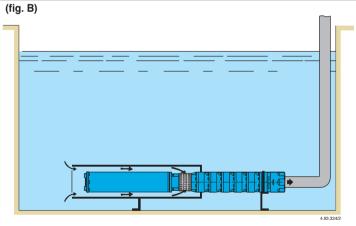
- Altre tensioni.
- Frequenza 60 Hz.
- Per liquidi con temperatura più alta.
- Sensore di tempereratura PT100
- Avvolgimento PE2+PA classe Y (90°C)
- Camicie di raffreddamento
- Flangiature speciali

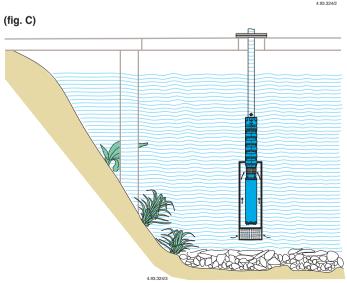
Materiali

Componente	4	"						
Carcassa esterna	Acciaio Cr-N	li AISI 304L						
Flangia motore	Ghisa con trattamento cataforesi							
	protetto da un coperchio in acciaio inox AISI 304							
Albero	Acciaio Cr-I	Ni AISI 304						
Cuscinetto retrospinta	in bagn	o d'olio						
Componente	6", 8", 10" standard	6", 8", 10" AISI 316						
Carcassa esterna	Acciaio AISI 304 (Acciaio AISI 316 per 6")	Acciaio Cr-Ni-Mo AISI 316						
Flangia motore	Ghisa GJL 250 EN 1561 (Ghisa G 25 EN 1561 per 8,10")	Acciaio Cr-Ni-Mo AISI 316						
Albero	Acciaio AISI 431 (Acciaio AISI 630 per 10")	Duplex 1.4462 (Acciaio AISI 630 per 8,10")						
Cuscinetto retrospinta	Pattini in ottone	Pattini in ottone						

Cavo


Motore 230V - 50Hz - 1~	Sezione	Lunghezza
4CS-R 0,37 ÷ 2,2 kW	4 x 1,5 mm ²	1,7 m


Motore 400V - 50Hz - 3 ~	Sezione	Lunghezza
4CS-R 0,37 ÷ 3 kW	4 x 1,5 mm²	1,7 m
4CS-R 4 ÷ 7,5 kW	4 x 2 mm²	2,7 m
6CS-R 4÷11 kW	3 x (1x2,5) mm ²	3,5 m
6CS-R 13÷22 kW	3 x (1x4) mm ²	3,5 m
6CS-R 26-30 kW	3 x (1x6) mm ²	3,5 m
6CS-R 37-45 kW	3 x (1x10) mm ²	4,5 m
8CS-R 30 ÷ 45 kW	3 x (1x16) mm²	4 m
8CS-R 51 ÷ 92 kW	3 x (1x25) mm²	4 m
8CS-R 110 kW	3 x (1x35) mm²	4 m
10CS 75 ÷ 92 kW	3x(1x25) mm²	4 m
10CS 110 ÷ 150 kW	3x(1x50) mm²	4 m
10CS 165 ÷ 185 kW	3x(1x70) mm²	4 m


Camicia di raffreddamento

Quando il motore sommerso viene installato:

- al di sotto delle aperture di ingresso nel pozzo (fig. A);
- in vasche di accumulo, laghi, bacini ecc. (fig. B e C) si rende necessaria l'installazione di una camicia esterna per creare un flusso di raffreddamento attorno al motore. Solo così si garantisce un funzionamento sicuro e senza surriscaldamenti che possano danneggiare irrimediabilmente il motore.

CS-R

Motori sommersi riavvolgibili

Prestazioni, dimensioni e pesi

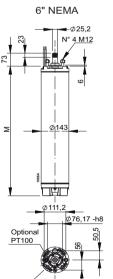
4"CS-R - 1 ~

Tipo		'n	IN 230 V	Fattore di potenza cos ω	Rendimento η %		Avv. diretto	Conden. 450 Vc		M	Peso
	kW	HP	A	τος φ		R.P.M.	la la	μ F	N	mm	kg
4CS-R 0,37MC	0,37	0,5	3,6	0,93	50	2805	10,5	20		311,3	6,45
4CS-R 0,55MC	0,55	0,75	4,7	0,92	56	2790	14,5	25		331,4	7,2
4CS-R 0,75MC	0,75	1	5,6	0,97	61	2830	16,5	35	2000	356,4	8,45
4CS-R 1,1MC	1,1	1,5	7,6	0,94	68	2845	22	40	2000	396,4	10,2
4CS-R 1,5MC	1,5	2	10,7	0,92	66	2840	32	60		436,5	11,65
4CS-R 2,2MC	2,2	3	14,6	0,93	69	2810	43	80		491,5	14,9

4"CS-R - 3 ~

Tipo	F	PN		IN Fattore di potenza			Avv. diretto	Carico assiale	М	Peso
	kW	HP	Α	cos φ		R.P.M.	la la	N	mm	kg
4CS-R 0,37TC	0,37	0,5	1,7	0,61	52	2830	6		311,3	6,45
4CS-R 0,55TC	0,55	0,75	2	0,66	60	2815	7		331,4	7,2
4CS-R 0,75TC	0,75	1	2,5	0,69	62	2820	8,5	2000	356,4	8,45
4CS-R 1,1TC	1,1	1,5	3,3	0,76	67	2810	11,5	2000	371,4	9,35
4CS-R 1,5TC	1,5	2	4,4	0,71	69	2815	15,5		396,4	10,2
4CS-R 2,2TC	2,2	3	6,1	0,73	71	2815	21		436,5	11,65
4CS-R 3TC	3	4	6,9	0,85	74	2820	24	3000	450	12,1
4CS-R 4TC	4	5,5	9,4	0,84	75	2820	33		505	15,1
4CS-R 5,5TC	5,5	7,5	13,4	0,77	77	2820	47	5000	589	19,8
4CS-R 7,5TC	7,5	10	16,4	0,81	81	2840	88]	800	29

4" NEMA 976,2*0,1 100,072,280 M8x1 915,5±0,05 8E E

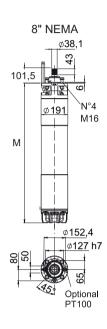

6" CS-R, I-6"CS-R

Tipo		Р	N	IN 400 V		i potenza s φ	Rendime	ento η %	R.P.M.	Avv. o	diretto	Carico assiale	М	Peso
Standard	AISI 316	kW	HP	А	4/4	3/4	4/4	3/4	R.P.M.	IA/IN	CA/CN	N	mm	kg
6CS-R 4	I-6CS-R 4	4	5,5	9,5	0,79	0,72	76,6	76	2895	4,35	1	30000	570	34,6
6CS-R 5,5	I-6CS-R 5,5	5,5	7,5	12,4	0,83	0,79	77,2	78,1	2875	4	0,9	30000	615	39,6
6CS-R 7,5	I-6CS-R 7,5	7,5	10	16,6	0,83	0,78	78,5	77,7	2885	4,45	1	30000	670	44,4
6CS-R 9,2	I-6CS-R 9,2	9,2	12,5	20,8	0,81	0,74	79,1	76,8	2880	4,2	0,9	30000	700	47,7
6CS-R 11	I-6CS-R 11	11	15	25,4	0,79	0,7	79,4	79	2870	4,75	1,4	30000	715	52
6CS-R 13	I-6CS-R 13	13	17,5	28,3	0,83	0,75	79,9	80,9	2870	4,75	1,3	30000	750	56
6CS-R 15	I-6CS-R 15	15	20	32,5	0,83	0,75	80,4	82,2	2880	4,2	1	30000	790	59,8
6CS-R 18,5	I-6CS-R 18,5	18,5	25	40,4	0,81	0,73	81,3	82,9	2870	4,8	1,5	30000	830	64,2
6CS-R 22	I-6CS-R 22	22	30	46,6	0,82	0,75	83	84,2	2870	4,9	1,5	30000	920	74,5
6CS-R 26	I-6CS-R 26	26	35	55,8	0,8	0,73	84	85,4	2880	5,25	1,7	30000	1055	89,3
6CS-R 30	I-6CS-R 30	30	40	62,5	0,83	0,77	83,5	85,4	2870	4,6	1,3	30000	1165	101,9
6CS-R 37	I-6CS-R 37	37	50	76,6	0,84	0,78	83,5	85,2	2860	4,55	1,3	30000	1245	111
6CS-R 45	I-6CS-R 45	45	60	96,3	0.82	0.75	82,5	84.3	2855	4.65	1,5	30000	1322	123,3

P2 Potenza nominale IN Corrente nominale

 $\frac{IA}{IN}$ Corrente di avviamento/Corrente nominale

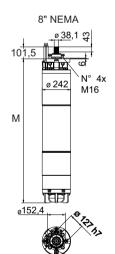
 $\frac{CA}{CN}$ Coppia di avviamento/Coppia nominale



Prestazioni, dimensioni e pesi

8" CS-R, I-8"CS-R

Tipo		PN		IN 400 V Fattore di potenza cos φ		Rendimento η %		R.P.M.	R.P.M. Avv. diretto		Carico assiale	М	Peso	
Standard	AISI 316	kW	HP	А	4/4	3/4	4/4	3/4	R.P.M.	IA/IN	CA/CN	N	mm	kg
8CS-R 30	I-8CS-R 30	30	40	61	0,86	0,83	82,6	83,3	2900	5,5	1,8	50000	1060	143
8CS-R 37	I-8CS-R 37	37	50	76,2	0,83	0,78	84,6	84,5	2910	5,9	1,8	50000	1115	155
8CS-R 45	I-8CS-R 45	45	60	91,9	0,83	0,79	84,8	85,2	2905	5,85	1,9	50000	1195	172
8CS-R 51	I-8CS-R 51	51	70	101,1	0,85	0,8	85,9	86,5	2910	6	1,9	50000	1290	192
8CS-R 59	I-8CS-R 59	59	80	116,7	0,84	0,79	86,8	87,2	2915	6,2	2	50000	1395	210
8CS-R 66	I-8CS-R 66	66	90	131,2	0,84	0,79	86,6	87,1	2905	6,1	2	50000	1430	219
8CS-R 75	I-8CS-R 75	75	100	145,4	0,86	0,82	86,6	87,5	2895	5,9	2	50000	1500	235
8CS-R 92	I-8CS-R 92	92	125	179,2	0,85	0,8	86,9	87,8	2900	6,3	2,1	50000	1685	265
8CS-R 110	I-8CS-R 110	110	150	213,8	0,86	0,81	86,9	87,8	2895	6	1,9	50000	1760	283

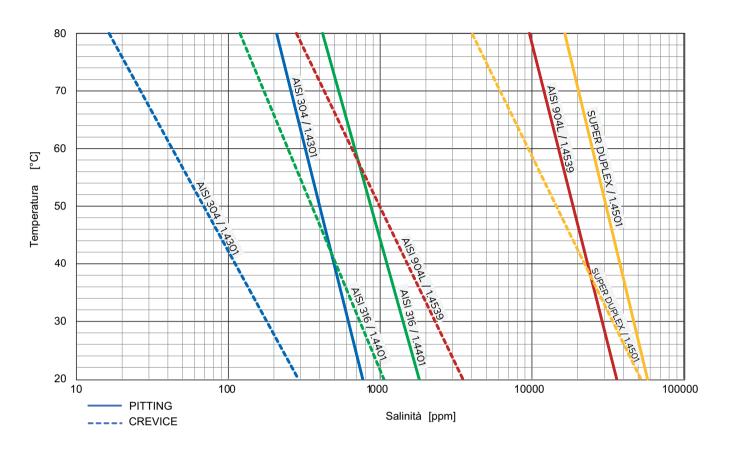


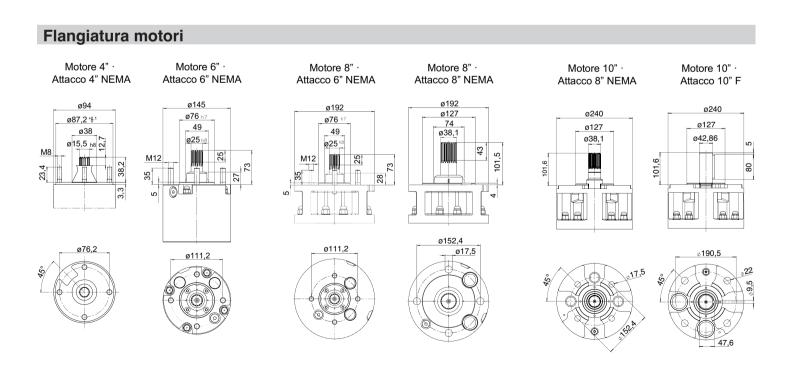
10" CS-R, I-10"CS

Tipo		PN		IN 400 V	Fattore di potenza cos φ		Rendimento η %		R.P.M. Avv. diretto		Carico assiale	М	Peso	
Standard	AISI 316	kW	HP	А	4/4	3/4	4/4	3/4	R.P.M.	IA/IN	CA/CN	N	mm	kg
10CS 75	I-10CS 75	75	100	145,5	0,87	0,85	85,9	86,6	2925	6,1	1,4	70000	1406	300
10CS 92	I-10CS 92	92	125	177,2	0,86	0,84	87	87,3	2925	6,7	1,6	70000	1536	338
10CS 110	I-10CS 110	110	150	209,7	0,86	0,83	87,8	88,2	2930	6,3	1,5	70000	1641	373
10CS 130	I-10CS 130	130	175	251,1	0,86	0,83	87,9	88,4	2930	6,6	1,6	70000	1766	408
10CS 150	I-10CS 150	150	200	284,3	0,86	0,83	88,4	88,8	2930	6,7	1,7	70000	1866	436
10CS 165	I-10CS 165	165	220	317,5	0,85	0,81	88,3	88,6	2930	6,9	1,7	70000	2026	466
10CS 185	I-10CS 185	185	250	358,5	0,84	0,8	88,4	88,6	2935	6,7	1,6	70000	2126	499

 $\frac{\mathsf{IA}}{\mathsf{IN}}$ Corrente di avviamento/Corrente nominale

 $\frac{C_A}{C_N}$ Coppia di avviamento/Coppia nominale


Optional PT100


CS-R

Motori sommersi riavvolgibili

Relazione tra la temperatura e il grado di salinità

Massima lunghezza cavi elettrici

		230 Vo	lt - 50 Hz	z - 1 ~									
In		1 cavo quadr	ipolare 4 xm	ı m ²									
Α	1,5	1,5 2,5 4 6 10											
		lunghezza cavi max m											
2	142	235											
4	71	118	189										
6	47	78	126	189									
8	35	59	94	142	231								
10	28	47	76	113	185								
12	24	39	63	95	154								
14	20	34	54	81	132								
16	18	29	47	71	115								
18		26	42	63	103								
20		24	38	57	92								
25			30	45	74								
30			25	38	62								

Caduta di tensione 3%. Max. temperatura ambiente 30 °C.

Avviamento diretto

			2	230	Vo	olt -	50	Hz	z - (3 ~			
ΙN		1 ca	ıvo qu	adripo	lare 4	1 ×	.mm²			4 cav	i 1 x	mr	n²
A	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150
					lung	hezza	a cav	i max	x m				
2	164	272											
4	82	136	218										
6	55	91	145	218									
8	41	68	109	164	267								
10	33	54	87	131	213								
12	27	45	73	109	178								
14	23	39	62	94	152	239							
16	20	34	55	82	133	209							
18		30	48	73	118	186							
20		27	44	65	107	167	257						
25			35	52	85	134	206						
30			29	44	71	111	171	233					
35				37	61	95	147	200					
40				33	53	83	129	175	227				
45					47	74	114	155	202				
50					43	67	103	140	181	249			
60						56	86	116	151	207			
70						48	73	100	130	178	230		
80							64	87	113	155	201	241	
90							57	78	101	138	179	214	
100							51	70	91	124	161	193	224
110								64	82	113	146	175	203
120								58	76	104	134	161	186
130									70	96	124	148	172
140									65	89	115	138	160
150									60	83	107	128	149
160									57	78	101	120	140
170									53	73	95	113	132
180									50	69	89	107	124
190									48	65	85	101	118
200									45	62	81	96	112
220										57	73	88	102
240										52	67	80	93
260											62	74	86
280											58	69	80
300											54	64	75

		400 Volt - 50 Hz - 3 ~													
In		1 ca	ıvo qu	adripo	olare 4	1 x	.mm²	!			4 cav	i 1 x	mı	n²	
Α	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240
						lun	ghez	za ca	vi ma	ax m					
2	285	473													
4	143	236	379												
6	95	158	253												
8	71	118	190	285											
10	57	95	152	228											
12	48	79	126	190	309										
14	41	68	108	163	265										
16	36	59	95	142	232										
18		53	84	127	206	323									
20		47	76	114	185	290									
25			61	91	148	232	358								
30			51	76	124	194	298								
35				65	106	166	256	347							
40				57	93	145	224	304							
45					82	129	199	270							
50					74	116	179	243	316						
60						97	149	203	263						
70						83	128	174	225	309					
80							112	152	197	270					
90							99	135	175	240	311				
100							89	122	158	216	280				
110								110	143	197	255	305			
120								101	132	180	233	279			
130									121	166	216	258	299		
140									113	155	200	239	278		
150									105	144	187	223	259	302	
160									99	135	175	209	243	283	
170									93	127	165	197	229	267	
180									88	120	156	186	216	252	297
190									83	114	147	176	205	239	281
200									79	108	140	168	195	227	267
220										98	127	152	177	206	243
240										90	117	140	162	189	223
260											108	129	150	174	206
280											100	120	139	162	191
300											93	112	130	151	178

Massima lunghezza cavi elettrici

Avviamento stella-triangolo

			2	30	Vol	t - 5	0 F	lz -	3 ~	, Y/	Δ				Τ			40	0 V	olt ·	- 50	Hz	<u> </u>	3 ~ `	Υ/Δ		
ĺΝ		2 ca	vi quad	dripola	ri 4 G	mr	n²		7 cavi 1 xmm ²			In		2	2 cavi	quadrip	olari 4	1 G	.mm²			7 ca	vi 1 x	mn	n²		
Α	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	Α	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150
					lun	ghezz	a cav	i max	m										lun	ghezz	a cav	i max	m				
30	19	31	50	76	123	193								30	33	55	88	131	214	335							
35		27	43	65	105	165								35		47	75	113	183	287							
40		24	38	57	92	144								40		41	66	99	160	251							
45		21	34	50	82	128	198							45			58	88	143	223	344						
50			30	45	74	116	178							50			53	79	128	201	310						
60				38	62	96	148	201						60				66	107	167	258	350					
70				32	53	83	127	173	224					70				56	92	144	221	300					
80					46	72	111	151	196					80					80	126	193	263	341				
90					41	64	99	134	174					90	<u> </u>				71	112	172	234	303			<u> </u>	
100						58	89	121	157	215				100					64	100	155	210	273	374		<u> </u>	Ш
110	_					53	81	110	143	196				110					58	91	141	191	248	340		<u> </u>	Ш
120	_					48	74	101	131	179				120	<u> </u>					84	129	175	228	312		<u> </u>	Ш
130	_					44	68	93	121	166	214			130	_					77	119	162	210	288	373	<u> </u>	\sqcup
140	+						64	86	112	154	199			140	-						111	150	195	267	346	<u> </u>	\sqcup
150	-						59	81	105	143	186			150	-						103	140	182	249	323		\sqcup
160	+						56	76	98	134	174	208		160	+						97	131	171	234	303	362	\vdash
170	+						52	71	92	127	164	196		170	+							124	161	220	285	341	\vdash
180	-							67 64	87 83	120 113	155 147	185 175	204	180 190	+							117	152 144	208	269 255	322	354
200	+							04	78	108	139	167	194	200	+							1111	137	197 187	242	305 290	337
220	+								10	98	127	152	176	200	+								13/	170	220	264	306
240	+									90	116	139	161	240	+									156	202	242	280
260	+									83	107	128	149	260	+									130	186	223	259
280	+									77	100	119	138	280	1										173	207	240
300	+									72	93	111	129	300	+										162	193	224

- Contro corto circuiti e sovraccarichi dell'elettropompa, si consiglia di attenersi alle normative in vigore.
- Per evitare un'eventuale funzionamento a secco dell'elettropompa, é consigliabile l'installazione di una sonda di livello.
- Onde evitare surriscaldamenti, cadute di tensione superiori al 3%, si consiglia di utilizzare appropriati sistemi di avviamento.
- Tutti i cavi devono rispettare le normative esistenti ed avere ottime caratteristiche d'isolamento.

Le tabelle mostrano la lunghezza massima del cavo in funzione della corrente assorbita dal motore e della sezione del cavo, alle varie tensioni, con una caduta di tensione massima pari al 3%, una temperatura massima del conduttore di 80°C, posa in acqua assimilata alla posa in aria libera alla temperatura di 30°C.

CS-R

Motori sommersi riavvolgibili

Scelta del cavo elettrico

Per dimensionare il cavo di alimentazione al motore sommerso occorrono i seguenti dati:

- V: tensione nominale (V)
- · I: Corrente assorbita dal motore (A)
- L: Lunghezza del cavo (m)
- cos φ: fattore di potenza del motore
- · Temperatura ambiente (°C)

La scelta della sezione minima del cavo è determinata in funzione della corrente nominale del motore e dei valori riportati in Tabella 1.

Tabella 1

Tipo di cavo*	Sezione nominale	Mass	sima cap	acità cavo	Resistenza	Reattanza
Tipo di cavo		1 lin	ea	2 linee	R a 80°C	X a 50 Hz
	mm ²	A 1)	A 2)	A 3)	Ω/km ⁴⁾	Ω/km ⁴⁾
Quadripolare	1.5	18		15	15.1	0,142
Quadripolare	2.5	24		20	9.08	0,131
Quadripolare	4	32		27	5.63	0,121
Quadripolare	6	41		35	3.73	0,115
Quadripolare	10	57		48	2.27	0,103
Quadripolare	16	76		65	1.43	0,098
Quadripolare	25	96		82	0.91	0,097
Quadripolare	35		119	101	0.65	0,094
Unipolare	50		167	142	0.473	0,121
Unipolare	70		216	184	0.328	0,116
Unipolare	95		264	224	0.236	0,118
Unipolare	120		308	262	0.188	0,113
Unipolare	150		356	303	0.153	0,112
Unipolare	185		409	348	0.123	0,109
Unipolare	240		485	412	0.094	0,110

¹⁾ IEC 60364-5-52:2009 Tab.B52.4 / C

Le portate massime dei cavi indicate nella Tabella 1 sono valide per temperatura ambiente di 30°C, qualora la temperatura ambiente fosse diversa, le portate massime dei cavi devono essere corrette con un coefficiente moltiplicativo riportato in Tabella 2.

Tabella 2 (IEC 60364-5-52:2009 Tab.B.52.14)

Temperatura ambiente°C	10	15	20	25	30	35	40	45	50	55	60
Fattore di correzione	1,22	1,17	1,12	1,06	1	0,94	0,87	0,79	0,71	0,61	0,5

Sezioni minime del cavo di alimentazione

La scelta definitiva della sezione del cavo si esegue verificando la caduta di tensione lungo la linea di alimentazione, mediante l'uso della seguente relazione:

DU% = $K*I*L*(R*cos \phi+X*sen \phi)/(V*1000)$

K= 1,73 per motori trifase e 2 per motori monofase

DU% la caduta di tensione percentuale non deve essere superiore al 3%

R, X = resistenza e reattanza del cavo in Ω /km (indicate nella Tabella 1)

 $sen\varphi = \sqrt{1-(cos\varphi)^2}$

Nel caso di avviamento Y/Δ la corrente nei cavi è la corrente nominale del motore divisa per 1,73.

Sezioni minime del conduttore di protezione PE

La sezione minima del conduttore di protezione PE può essere determinata dalla Tabella 3:

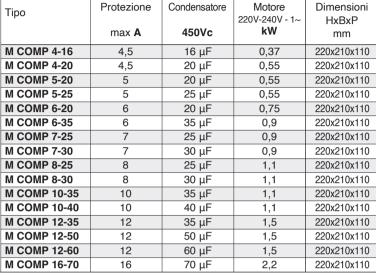
Tabella 3 (CEI 64-8:2007 Tab.54F)

Sezione del conduttore di fase	Sezione del conduttore di protezione				
S	Spe				
mm ²	mm²				
S ≤ 16	S				
16 < S ≤ 25	16				
S > 25	S/2				

²⁾ IEC 60364-5-52:2009 Tab.B52.6

^{3) 1)}x0,85 IEC 60364-5-52:2009 Tab.B52.17 ITEM2

⁴⁾ UNEL 35023-70


^{*}Fino a sezioni di cavo di 35 mm² si usano cavi quadripolari, oltre si consigliano cavi unipolari.

Quadri elettrici

M COMP Quadri di comando per 1 pompa sommergibile o sommersa monofase

Costruzione

Quadro di comando con interruttore e condensatore per 1 pompa sommergibile o sommersa con motore monofase.

Predisposto per inserire la scheda controllo livello LVBT.

Protezione garantita da interruttore generale bipolare con una fase protetta al sovraccarico da elemento termico.

N.B. Non adatto per pompe con condensatore interno.

PFC-M Quadri di comando per 1 pompa sommersa con motore monofase, con controllo del cos φ

Т	Гіро	Taratura	Condensatore	Motore 50/60Hz 220V-240V - 1~	Dimensioni HxBxP
		Α	450Vc	kW	mm
F	PFC-M 18-16	1 - 18	16 μF	0,37	220x210x110
F	PFC-M 18-20	1 - 18	20 μF	0,55	220x210x110
F	PFC-M 18-25	1 - 18	25 μF	0,55	220x210x110
F	PFC-M 18-30	1 - 18	30 μF	0,75	220x210x110
F	PFC-M 18-35	1 - 18	35 μF	0,75	220x210x110
F	PFC-M 18-40	1 - 18	40 μF	1,1	220x210x110
F	PFC-M 18-50	1 - 18	50 μF	1,5	220x210x110
F	PFC-M 18-60	1 - 18	60 μF	1,5	220x210x110
F	PFC-M 18-70	1 - 18	70 μF	2,2	220x210x110

Costruzione

Quadro di comando per una pompa sommersa con motore monofase.

Controllo elettronico del funzionamento e protezione contro la marcia a secco tramite lettura del fattore di potenza ($\cos \varphi$).

Non è richiesta l'installazione delle sonde di livello nel pozzo.

Riconosce la mancanza d'aria nel serbatoio di accumulo e ferma la pompa (sistema brevettato). I dati di funzionamento e gli allarmi sul display, sono visualizzabili in quattro lingue.

N.B. Non adatto per pompe con condensatore interno e galleggiante montato sulla pompa.

QML/A 1 D Quadri di comando per 1 pompa con motore monofase, avviamento diretto

Tipo	Motore 230V - 1~	Taratura	Dimensioni
	kW	Α	HxBxP mm
QML/A 1 D 12A-FA	0,25 - 1,5	1 - 12	250x205x105
QML/A 1 D 12A-FA 20	0,25 - 1,5	1 - 12	250x205x105
QML/A 1 D 12A-FA 25	0,25 - 1,5	1 - 12	250x205x105
QML/A 1 D 3 FT	2,2 - 3	13 - 18	400x300x160

Costruzione

Quadro di comando per 1 pompa con motore monofase, avviamento diretto per impianti di pressurizzazione e pompe sommergibili per drenaggio.

Predisposto per il collegamento interno del condensatore (per pompe

senza condensatore a bordo.

Funzionamento gestito da centralina elettronica tipo MPS 3000 con microprocessore che consente diversi modi di funzionamento della pompa.

TCOMP Quadri di comando per 1 pompa sommersa con motore trifase

Tipo	Protezione	Motore 230V - 3~	Motore 400V - 3~	Dimensioni
	Α	kW	kW	HxBxP mm
T COMP 8	1 ÷ 8	0,37 ÷ 1,5	0,5 ÷ 2,2	170x145x85
T COMP 10	7 ÷ 10		3 ÷ 3,7	230x180x155
T COMP 12	9 ÷ 12	2,2	4	230x180x155
T COMP 16	11 ÷ 16	3	5,5	230x180x155
T COMP 20	14 ÷ 20	3,7 - 4	7,5	230x180x155

Costruzione

Quadro di comando e protezione per 1 pompa con motore trifase sommerso.

Predisposizione per il collegamento interno del regolatore di livello LVBT per la protezione contro la marcia a secco. (modello T COMP 8 con regolatore di livello di serie).

Comando elettropompe a mezzo pressostato o interruttore a galleggiante.

Quadri elettrici

PFC-T Quadri di comando per 1 pompa sommersa con motore trifase, con controllo del cos φ

40	0
PF	
A Section of the sect	
	0

Tipo	Motore 400V - 3~	Taratura	Dimensioni
	kW	Α	HxBxP mm
PFC-T 16/A	0,37 - 5,5	1 - 16	250x205x105

Costruzione

Quadro di comando per una pompa sommersa con motore trifase. Controllo elettronico del funzionamento e protezione contro il funzionamento a secco tramite lettura del fattore di potenza ($\cos \varphi$). Non è richiesta l'installazione delle sonde di livello nel pozzo.

Non è richiesta l'installazione delle sonde di livello nel pozzo. Riconosce la mancanza d'aria nel serbatoio di accumulo e ferma la pompa (sistema brevettato). I dati di funzionamento e gli allarmi sul display, sono visualizzabili in quattro lingue.

QTL/A 1 D Quadri di comando per 1 pompa con motore trifase, avviamento diretto

Tipo	Motore 400V - 3~	Taratura	Dimensioni
	kW	A	HxBxP mm
QTL/A 1 D 12A-FA	0,25 - 5,5	1 - 12	250x205x105
QTL/A 1 D 7,5 FT	7,5	13 - 18	400x300x160
QTL/A 1 D 9,2 FT	9,2	17 - 23	400x300x160
QTL/A 1 D 11 FT	11	20 - 25	400x300x160

Costruzione

Quadro di comando per 1 pompa con motore trifase, avviamento diretto per impianti di pressurizzazione, con sistema che rileva il tempo di lavoro della pompa (brevettato) e ferma la stessa quando si riduce il cuscino d'aria nel serbatoio.

Protezione contro la marcia a secco con

Protezione contro la marcia a secco cor galleggiante o sonde di livello.

Funzionamento gestito da centralina elettronica tipo MPS 3000 con microprocessore che consente diversi modi di funzionamento della pompa.

QTL 1 D FTE Quadri di comando per 1 pompa con motore trifase, avviamento diretto

	- Coloresta S.
•	The state of the s

	Tipo	Motore 400V - 3~	Taratura	Dimensioni
		kW	Α	HxBxP mm
	QTL 1 D 4 FTE	4	6,3 - 10	400x300x160
	QTL 1 D 5,5 FTE	5,5	9 - 12	400x300x160
	QTL 1 D 7,5 FTE	7,5	13 - 18	400x300x160
	QTL 1 D 9,2 FTE	9,2	17 - 23	400x300x160
	QTL 1 D 11 FTE	11	20 - 25	400x300x160
	QTL 1 D 15 FTE	15	24 - 32	500x350x200
	QTL 1 D 18,5 FTE	18,5	32 - 38	500x350x200
	QTL 1 D 22 FTE	22	35 - 50	500x350x200
	QTL 1 D 30 FTE	30	46 - 65	500x350x200

Costruzione

Quadro elettomeccanico di comando per 1 pompa con motore trifase, avviamento diretto. Segnali di funzionamento su scheda led tipo E 1000

Protezione contro il funzionamento a secco a mezzo galleggiante.

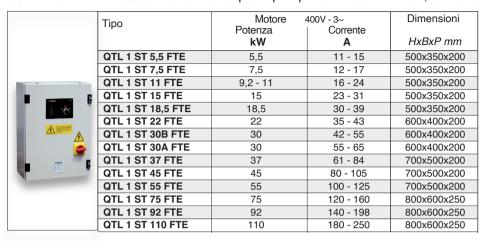
A richiesta costruzione con regolatore di livello SRLE per collegamento sonde contro la marcia a secco.

QTL/A 1 ST FT Quadri di comando per 1 pompa con motore trifase, avviamento Y/\(\Delta\)

Tipo	Potenza	400V - 3~ Corrente	Dimensioni
	kW	Α Α	HxBxP mm
QTL/A 1 ST 5,5 FT	5,5	11 - 15	600x400x200
QTL/A 1 ST 7,5 FT	7,5	12 - 17	600x400x200
QTL/A 1 ST 11 FT	9,2 - 11	16 - 24	600x400x200
QTL/A 1 ST 15 FT	15	23 - 31	600x400x200
QTL/A 1 ST 18,5 FT	18,5	30 - 39	600x400x200
QTL/A 1 ST 22 FT	22	35 - 43	700x500x200
QTL/A 1 ST 30B FT	30	42 - 55	700x500x200
QTL/A 1 ST 30A FT	30	55 - 65	700x500x200
QTL/A 1 ST 37 FT	37	61 - 84	800x600x250
QTL/A 1 ST 45 FT	45	80 - 105	800x600x250

Costruzione

Quadro di comando per 1 pompa con motore trifase, avviamento Y/Δ per impianti di pressurizzazione, con sistema che rileva il tempo di lavoro della pompa (brevettato) e ferma la stessa quando si riduce il cuscino d'aria nel serbatojo


Funzionamento pompa gestito da centralina elettronica tipo MPS 3000 con microprocessore che consente diversi modi di funzionamento.

Protezione contro il funzionamento a secco a mezzo galleggiante o sonde di livello.

Quadri elettrici

QTL 1 ST FTE Quadri di comando per 1 pompa con motore trifase, avviamento Y/\Delta

Costruzione

Quadro elettromeccanico di comando per 1 pompa con motore trifase, avviamento Y/Δ . Segnali di funzionamento su scheda led tipo E 1000

Protezione contro il funzionamento a secco a mezzo galleggiante.

A richiesta costruzione con regolatore di livello SRLE per collegamento sonde contro la marcia a secco.

QTL 1 SS E Quadri di comando per 1 pompa con motore trifase, avviamento/arresto con soft starter

	Tipo	Motore 400V - 3~	Max corrente erogata	Dimensioni
		kW	max A	HxBxP mm
722	QTL 1 SS 7,5 E	7,5	17	700x500x250
100 M	QTL 1 SS 15 E	9,2 - 11 - 15	30	700x500x250
· 6	QTL 1 SS 22 E	18,5 - 22	45	700x500x250
Vaca	QTL 1 SS 30 E	26 - 30	60	900x600x300
	QTL 1 SS 37 E	37	75	900x600x300
	QTL 1 SS 45 E	45	85	900x600x300
	QTL 1 SS 55 E	55	110	900x600x300
	QTL 1 SS 63 E	63	125	1100x700x300
	QTL 1 SS 75 E	75	142	1100x700x300
	QTL 1 SS 90 E	90	190	1200x800x400
	QTL 1 SS 132 E	110 - 132	245	1200x800x400

Costruzione

Quadro di comando per 1 pompa con motore trifase, avviamento/arresto con avviatore statico (soft starter).

Segnali di funzionamento su scheda led tipo E 1000.

Applicazione: comando di motori sommersi con notevoli lunghezze di cavo e motori di superfice. Protezione contro il funzionamento a secco a mezzo galleggiante.

A richiesta costruzione con regolatore di livello SRLE per collegamento sonde contro la marcia a secco.

QTL 1 IS FTE Quadri di comando per 1 pompa con motore trifase, avviamento con Impedenza Statorica

	Tipo	Motore Potenza kW	400V - 3~ Corrente A	Dimensioni HxBxP mm
	QTL 1 IS 5,5 FTE-2RL	5,5	11 - 15	
[200]	QTL 1 IS 7,5 FTE-2RL	7,5	12 - 17	
	QTL 1 IS 11 FTE-2RL	9,2 - 11	16 - 24	
·Ġ	QTL 1 IS 15 FTE-2RL	15	23 - 31	
企业	QTL 1 IS 18,5 FTE-2RL	18,5	30 - 39	
	QTL 1 IS 22 FTE-2RL	22	35 - 43	
	QTL 1 IS 30 FTE-2RL	30	42- 65	
	QTL 1 IS 37 FTE-2RL	37	61 - 84	
	QTL 1 IS 45 FTE-2RL	45	80 - 105	
	QTL 1 IS 55 FTE-2RL	55	100 - 125	
	QTL 1 IS 75 FTE-2RL	75	120 - 160	
	QTL 1 IS 92 FTE-2RL	92	140 - 198	
	QTL 1 IS 110 FTE-2RL	110	180 - 250	

Costruzione

Quadro di comando per 1 pompa sommersa con motore trifase, avviamento con impedenza statorica.

Segnali di funzionamento su scheda led tipo E

Applicazione: comando di motori sommersi con notevoli lunghezze di cavo.

Regolatore di livello SRLE per collegamento sonde contro la marcia a secco.

Quadri elettrici

QML 1 VFT Quadri di comando per 1 pompa con motore trifase a velocità variabile.

•	

Tipo	Motore 230V - 3~	Max corrente erogata	Dimensioni
	kW	max A	HxBxP mm
QML 1 VFT 0,4	0,37 - 0,45	2,4	500x350x200
QML 1 VFT 0,75	0,55 - 0,75	4,2	500x350x200
QML 1 VFT 1,5	1,1 - 1,5	7,5	500x350x200
QML 1 VFT 2,2	2,2	10	500x350x200

Costruzione

Quadro di comando con **alimentazione monofase** con inverter per 1 pompa a velocità variabile con motore trifase, per impianti di pressurizzazione a pressione costante.

Predisposto per l'applicazione del regolatore di livello SRL 3 per collegamento sonde e contro la marcia a secco.

Funzionamento pompa gestito da centralina elettronica tipo MPS 4000 con microprocessore.

QTL 1 VFT Quadri di comando per 1 pompa con motore trifase a velocità variabile

	Tip
	QT QT
	QT

	Tipo	Motore 400V - 3~ kW	Max corrente erogata max A	Dimensioni HxBxP mm
(QTL 1 VFT 0,4	0,4	1,5	500x350x200
. [QTL 1 VFT 0,75	0,55 - 0,75	2,3	500x350x200
	QTL 1 VFT 1,5	1,1 - 1,5	4,1	500x350x200
	QTL 1 VFT 2,2	2,2	5,5	500x350x200
	QTL 1 VFT 4	3 - 4	9,5	500x350x200
L	QTL 1 VFT 5,5	5,5	14,3	600x400x250
	QTL 1 VFT 7,5	7,5	17	600x400x250
L	QTL 1 VFT 11	9,2 - 11	27,7	700x500x250
	QTL 1 VFT 15	15	33	700x500x250
L	QTL 1 VFT 18,5	18,5	46,3	800x600x250
(QTL 1 VFT 22	22	61,5	800x600x250
_ (QTL 1 VFT 30	30	74,5	900x600x250
(QTL 1 VFT 37	37	88	1100x700x300
_ (QTL 1 VFT 45	45	106	1200x800x300
(QTL 1 VFT 55	55	145	1200x800x300
(QTL 1 VFT 75	75	173	1200x800x300

Costruzione

Quadro di comando con inverter per 1 pompa a velocità variabile con motore trifase, per impianti di pressurizzazione a pressione costante.

Predisposto per l'applicazione del regolatore di livello SRL 3 per collegamento sonde e contro la marcia a secco.

Funzionamento pompa gestito da centralina elettronica tipo MPS 4000 con microprocessore.